Note Management System
Edit Note
Title:
Content:
Let's go through the code to understand how the neural network is set up, how the weights, biases, and layers work, and how it processes input to make predictions. 1. Class Definition: NeuralNetwork The NeuralNetwork class represents the neural network and handles the essential operations: initializing layers, weights, and biases, feeding forward data, and performing matrix operations. php Copy code class NeuralNetwork { private $layers; // Array defining the number of neurons in each layer private $weights; // Weights for each layer private $biases; // Biases for each layer $layers: This defines the structure of the neural network — how many neurons there are in each layer. $weights: This array holds the weight matrices that define the strength of connections between neurons in consecutive layers. $biases: This array holds the bias values for each neuron in the network. 2. Constructor: __construct($layers) The constructor initializes the network by setting up layers, weights, and biases. php Copy code public function __construct($layers) { $this->layers = $layers; // Set layers $this->weights = []; // Initialize weights array $this->biases = []; // Initialize biases array // Initialize weights and biases with random values for ($i = 1; $i < count($layers); $i++) { $this->weights[$i] = $this->randomMatrix($layers[$i], $layers[$i-1]); $this->biases[$i] = $this->randomMatrix($layers[$i], 1); } } The constructor accepts an array $layers that defines the number of neurons in each layer (e.g., [12, 10, 9, 2, 3] for 12 neurons in the input layer, 10 in the first hidden layer, etc.). The weights for each layer are initialized using the randomMatrix method. It generates matrices with random values between -1 and 1. This randomness ensures the network starts with different weights for each training process. 3. Method: randomMatrix($rows, $cols) This method creates a matrix (2D array) with random values for weights or biases. php Copy code private function randomMatrix($rows, $cols) { $matrix = []; for ($i = 0; $i < $rows; $i++) { for ($j = 0; $j < $cols; $j++) { $matrix[$i][$j] = mt_rand(-1000, 1000) / 1000; // Random values between -1 and 1 } } return $matrix; } It generates random values for each element in a matrix of size rows x cols. The random values are between -1 and 1 (scaled from mt_rand(-1000, 1000) to a value between -1 and 1). 4. Method: feedForward($input) This method performs the feedforward operation to pass the input data through the network and obtain the output. php Copy code public function feedForward($input) { $output = $input; // Loop through each layer for ($i = 1; $i < count($this->layers); $i++) { // Matrix multiplication of inputs and weights + bias $output = $this->sigmoid($this->matrixAdd($this->matrixMultiply($this->weights[$i], $output), $this->biases[$i])); } return $output; } Input: The input data is passed to the first layer. Loop: The data flows through each layer of the network (starting from the input layer). For each layer, matrix multiplication of weights and inputs is performed, followed by adding biases. The result is passed through the activation function (sigmoid in this case) to introduce non-linearity. 5. Method: sigmoid($x) This method applies the sigmoid activation function. php Copy code private function sigmoid($x) { if (is_array($x)) { foreach ($x as &$row) { foreach ($row as &$value) { $value = 1 / (1 + exp(-$value)); // Apply sigmoid function element-wise } } } else { $x = 1 / (1 + exp(-$x)); // Apply sigmoid function to single value } return $x; } Sigmoid function: The sigmoid function transforms inputs into a range between 0 and 1, making it suitable for binary classification problems (e.g., "Will Buy" or "Won't Buy"). 6. Matrix Operations Two important operations are used to process data through the network: Matrix Multiplication (matrixMultiply): This function multiplies two matrices. Matrix Addition (matrixAdd): This function adds two matrices (used for adding weights and biases). 7. Display Weights The displayWeights method is used to output the weights for each layer. php Copy code public function displayWeights() { foreach ($this->weights as $key => $layerWeights) { echo "Weights for layer $key:<br>"; foreach ($layerWeights as $neuronWeights) { echo "[" . implode(", ", $neuronWeights) . "]<br>"; } } } This is useful for debugging or inspecting the network's learned parameters. 8. Form for Prediction The form collects user input (e.g., age, salary, experience, education) and submits it as a POST request. The neural network then uses the input to predict whether the person will buy the product. php Copy code if ($_SERVER['REQUEST_METHOD'] === 'POST') { if (isset($_POST['age'], $_POST['salary'], $_POST['experience'], $_POST['education'], $_POST['marital_status'], $_POST['location'])) { $input = [ [floatval($_POST['age'])], [floatval($_POST['salary'])], [floatval($_POST['experience'])], [floatval($_POST['education'])], [floatval($_POST['marital_status'])], [floatval($_POST['location'])], // Add additional fields if needed to fill all 12 input neurons [0.0], [0.0], [0.0], [0.0], [0.0], [0.0] ]; // Perform feedforward operation to get the prediction $output = $nn->feedForward($input); $prediction = $output[0][0] >= 0.5 ? "Will Buy" : "Won't Buy"; echo "Prediction: $prediction<br>"; echo "Predicted Probability: " . number_format($output[0][0], 4); } else { echo "Please fill in all the fields."; } } Prediction: After the user submits the form, the feedForward method is called to calculate the network's prediction based on the input. Output: The prediction is displayed along with the predicted probability. Conclusion In summary, the code represents a simple feedforward neural network for binary classification. It uses layers, weights, and biases to process input data and make predictions. The weights and biases are initialized randomly and the neural network can be trained (though training is not covered here). The neural network uses the sigmoid activation function and matrix operations to propagate data through the layers. //////////////////////////////////////////////////// Neural Network Initialization (__construct): This class creates a 6-layer neural network. The layers are [6, 35, 35, 35, 35, 1], where 6 is the number of input neurons, 35 is the number of neurons in each hidden layer, and 1 is the output neuron. Weights and biases for each layer are randomly initialized. <?php class NeuralNetwork { private $layers; // Array defining the number of neurons in each layer private $weights; // Weights for each layer private $biases; // Biases for each layer public function __construct($layers) { $this->layers = $layers; $this->weights = []; $this->biases = []; // Initialize weights and biases with random values for ($i = 1; $i < count($layers); $i++) { $this->weights[$i] = $this->randomMatrix($layers[$i], $layers[$i-1]); $this->biases[$i] = $this->randomMatrix($layers[$i], 1); } } // Random matrix initialization function private function randomMatrix($rows, $cols) { $matrix = []; for ($i = 0; $i < $rows; $i++) { for ($j = 0; $j < $cols; $j++) { $matrix[$i][$j] = mt_rand(-1000, 1000) / 1000; // Random values between -1 and 1 } } return $matrix; } // Feed forward function to pass data through the network public function feedForward($input) { $output = $input; // Loop through each layer for ($i = 1; $i < count($this->layers); $i++) { // Matrix multiplication of inputs and weights + bias $output = $this->sigmoid($this->matrixAdd($this->matrixMultiply($this->weights[$i], $output), $this->biases[$i])); } return $output; } // Sigmoid activation function private function sigmoid($x) { if (is_array($x)) { foreach ($x as &$row) { foreach ($row as &$value) { $value = 1 / (1 + exp(-$value)); // Apply sigmoid function element-wise } } } else { $x = 1 / (1 + exp(-$x)); // Apply sigmoid function to single value } return $x; } // Matrix multiplication function private function matrixMultiply($a, $b) { $rowsA = count($a); $colsA = count($a[0]); $colsB = count($b[0]); $result = []; for ($i = 0; $i < $rowsA; $i++) { for ($j = 0; $j < $colsB; $j++) { $sum = 0; for ($k = 0; $k < $colsA; $k++) { $sum += $a[$i][$k] * $b[$k][$j]; } $result[$i][$j] = $sum; } } return $result; } // Matrix addition function private function matrixAdd($a, $b) { $rows = count($a); $cols = count($a[0]); $result = []; for ($i = 0; $i < $rows; $i++) { for ($j = 0; $j < $cols; $j++) { $result[$i][$j] = $a[$i][$j] + $b[$i][$j]; } } return $result; } } // Define the number of neurons in each layer (6 input features, 4 hidden layers with 35 neurons each, 1 output neuron) $nn = new NeuralNetwork([6, 35, 35, 35, 35, 1]); // Check if the form is submitted if ($_SERVER['REQUEST_METHOD'] === 'POST') { // Collect input data from the form if (isset($_POST['age'], $_POST['salary'], $_POST['experience'], $_POST['education'], $_POST['marital_status'], $_POST['location'])) { // Convert form inputs to float $input = [ [floatval($_POST['age'])], [floatval($_POST['salary'])], [floatval($_POST['experience'])], [floatval($_POST['education'])], [floatval($_POST['marital_status'])], [floatval($_POST['location'])] ]; // Perform feedforward operation to get the prediction $output = $nn->feedForward($input); $prediction = $output[0][0] >= 0.5 ? "Will Buy" : "Won't Buy"; // Display the result echo "Prediction: $prediction<br>"; echo "Predicted Probability: " . number_format($output[0][0], 4); } else { echo "Please fill in all the fields."; } } else { echo "Please submit the form to get a prediction."; } ?> <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Predict Product Purchase</title> </head> <body> <h1>Predict if someone will buy a product</h1> <form method="POST"> <label for="age">Age:</label> <input type="number" step="any" id="age" name="age" required><br> <label for="salary">Salary:</label> <input type="number" step="any" id="salary" name="salary" required><br> <label for="experience">Years of Experience:</label> <input type="number" step="any" id="experience" name="experience" required><br> <label for="education">Education Level:</label> <select id="education" name="education" required> <option value="1">High School</option> <option value="2">Bachelor's</option> <option value="3">Master's</option> <option value="4">PhD</option> </select><br> <label for="marital_status">Marital Status:</label> <select id="marital_status" name="marital_status" required> <option value="0">Single</option> <option value="1">Married</option> </select><br> <label for="location">Location:</label> <input type="text" id="location" name="location" required><br> <input type="submit" value="Get Prediction"> </form> </body> </html> ////////////////////////////// <?php class NeuralNetwork { private $layers; // Array defining the number of neurons in each layer private $weights; // Weights for each layer private $biases; // Biases for each layer public function __construct($layers) { $this->layers = $layers; $this->weights = []; $this->biases = []; // Initialize weights and biases with random values for ($i = 1; $i < count($layers); $i++) { $this->weights[$i] = $this->randomMatrix($layers[$i], $layers[$i-1]); $this->biases[$i] = $this->randomMatrix($layers[$i], 1); } } // Random matrix initialization function private function randomMatrix($rows, $cols) { $matrix = []; for ($i = 0; $i < $rows; $i++) { for ($j = 0; $j < $cols; $j++) { $matrix[$i][$j] = mt_rand(-1000, 1000) / 1000; // Random values between -1 and 1 } } return $matrix; } // Feed forward function to pass data through the network public function feedForward($input) { $output = $input; // Loop through each layer for ($i = 1; $i < count($this->layers); $i++) { // Matrix multiplication of inputs and weights + bias $output = $this->sigmoid($this->matrixAdd($this->matrixMultiply($this->weights[$i], $output), $this->biases[$i])); } return $output; } // Sigmoid activation function private function sigmoid($x) { if (is_array($x)) { foreach ($x as &$row) { foreach ($row as &$value) { $value = 1 / (1 + exp(-$value)); // Apply sigmoid function element-wise } } } else { $x = 1 / (1 + exp(-$x)); // Apply sigmoid function to single value } return $x; } // Matrix multiplication function private function matrixMultiply($a, $b) { $rowsA = count($a); $colsA = count($a[0]); $colsB = count($b[0]); $result = []; for ($i = 0; $i < $rowsA; $i++) { for ($j = 0; $j < $colsB; $j++) { $sum = 0; for ($k = 0; $k < $colsA; $k++) { $sum += $a[$i][$k] * $b[$k][$j]; } $result[$i][$j] = $sum; } } return $result; } // Matrix addition function private function matrixAdd($a, $b) { $rows = count($a); $cols = count($a[0]); $result = []; for ($i = 0; $i < $rows; $i++) { for ($j = 0; $j < $cols; $j++) { $result[$i][$j] = $a[$i][$j] + $b[$i][$j]; } } return $result; } } // Define the number of neurons in each layer (6 input features, 4 hidden neurons, 1 output neuron) $nn = new NeuralNetwork([6, 4, 1]); // Check if the form is submitted if ($_SERVER['REQUEST_METHOD'] === 'POST') { // Collect input data from the form if (isset($_POST['age'], $_POST['salary'], $_POST['experience'], $_POST['education'], $_POST['marital_status'], $_POST['location'])) { // Convert form inputs to float $input = [ [floatval($_POST['age'])], [floatval($_POST['salary'])], [floatval($_POST['experience'])], [floatval($_POST['education'])], [floatval($_POST['marital_status'])], [floatval($_POST['location'])] ]; // Perform feedforward operation to get the prediction $output = $nn->feedForward($input); $prediction = $output[0][0] >= 0.5 ? "Will Buy" : "Won't Buy"; // Display the result echo "Prediction: $prediction<br>"; echo "Predicted Probability: " . number_format($output[0][0], 4); } else { echo "Please fill in all the fields."; } } else { echo "Please submit the form to get a prediction."; } ?> <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Predict Product Purchase</title> </head> <body> <h1>Predict if someone will buy a product</h1> <form method="POST"> <label for="age">Age:</label> <input type="number" step="any" id="age" name="age" required><br> <label for="salary">Salary:</label> <input type="number" step="any" id="salary" name="salary" required><br> <label for="experience">Years of Experience:</label> <input type="number" step="any" id="experience" name="experience" required><br> <label for="education">Education Level:</label> <select id="education" name="education" required> <option value="1">High School</option> <option value="2">Bachelor's</option> <option value="3">Master's</option> <option value="4">PhD</option> </select><br> <label for="marital_status">Marital Status:</label> <select id="marital_status" name="marital_status" required> <option value="0">Single</option> <option value="1">Married</option> </select><br> <label for="location">Location:</label> <input type="text" id="location" name="location" required><br> <input type="submit" value="Get Prediction"> </form> </body> </html> /////////////////////////////////////////////////////////////////////////////// <?php class NeuralNetwork { private $layers; // Array defining the number of neurons in each layer private $weights; // Weights for each layer private $biases; // Bias values for each layer public function __construct($layers) { $this->layers = $layers; $this->weights = []; $this->biases = []; // Initialize weights and biases with random values for ($i = 1; $i < count($layers); $i++) { $this->weights[$i] = $this->randomMatrix($layers[$i], $layers[$i-1]); $this->biases[$i] = $this->randomMatrix($layers[$i], 1); } } private function randomMatrix($rows, $cols) { // Generate a matrix with random values between -1 and 1 $matrix = []; for ($i = 0; $i < $rows; $i++) { for ($j = 0; $j < $cols; $j++) { $matrix[$i][$j] = mt_rand(-1000, 1000) / 1000; // Random value between -1 and 1 } } return $matrix; } public function feedForward($input) { $output = $input; // Feed the input through the layers for ($i = 1; $i < count($this->layers); $i++) { // Matrix multiplication of inputs and weights + bias $output = $this->sigmoid($this->matrixAdd($this->matrixMultiply($this->weights[$i], $output), $this->biases[$i])); } return $output; } private function sigmoid($x) { if (is_array($x)) { // Apply sigmoid to each element in the array (element-wise) foreach ($x as &$row) { foreach ($row as &$value) { $value = 1 / (1 + exp(-$value)); } } } else { $x = 1 / (1 + exp(-$x)); } return $x; } private function matrixMultiply($a, $b) { $rowsA = count($a); $colsA = count($a[0]); $colsB = count($b[0]); $result = []; for ($i = 0; $i < $rowsA; $i++) { for ($j = 0; $j < $colsB; $j++) { $sum = 0; for ($k = 0; $k < $colsA; $k++) { $sum += $a[$i][$k] * $b[$k][$j]; } $result[$i][$j] = $sum; } } return $result; } private function matrixAdd($a, $b) { $rows = count($a); $cols = count($a[0]); $result = []; for ($i = 0; $i < $rows; $i++) { for ($j = 0; $j < $cols; $j++) { $result[$i][$j] = $a[$i][$j] + $b[$i][$j]; } } return $result; } } // Initialize neural network with 5 input features, 4 hidden neurons, and 1 output $nn = new NeuralNetwork([5, 4, 1]); // Ensure that the form is submitted and the POST data exists if ($_SERVER['REQUEST_METHOD'] === 'POST') { if (isset($_POST['age'], $_POST['salary'], $_POST['experience'], $_POST['education'], $_POST['marital_status'], $_POST['location'])) { // Get input values and convert them to float for processing $input = [ [floatval($_POST['age'])], [floatval($_POST['salary'])], [floatval($_POST['experience'])], [floatval($_POST['education'])], // This is an example; adjust based on your input type [floatval($_POST['marital_status'])], // Likewise, adjust based on your input type [floatval($_POST['location'])] // Adjust based on your input type ]; // Perform the feedforward operation to get the predicted output $output = $nn->feedForward($input); $prediction = $output[0][0] >= 0.5 ? "Will Buy" : "Won't Buy"; // Display the result echo "Prediction: $prediction<br>"; echo "Predicted Probability: " . number_format($output[0][0], 4); } else { echo "Please fill in all the fields."; } } else { // Show initial form if the page is accessed without submission echo "Please submit the form to get a prediction."; } ?> <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Predict Product Purchase</title> </head> <body> <h1>Predict if someone will buy a product</h1> <form method="POST"> <label for="age">Age:</label> <input type="number" step="any" id="age" name="age" required><br> <label for="salary">Salary:</label> <input type="number" step="any" id="salary" name="salary" required><br> <label for="experience">Years of Experience:</label> <input type="number" step="any" id="experience" name="experience" required><br> <label for="education">Education Level:</label> <select id="education" name="education" required> <option value="1">High School</option> <option value="2">Bachelor's</option> <option value="3">Master's</option> <option value="4">PhD</option> </select><br> <label for="marital_status">Marital Status:</label> <select id="marital_status" name="marital_status" required> <option value="0">Single</option> <option value="1">Married</option> </select><br> <label for="location">Location:</label> <input type="text" id="location" name="location" required><br> <input type="submit" value="Get Prediction"> </form> </body> </html> Age: Salary: Years of Experience: Education Level: High School Marital Status: Single Location:
Update Note