Note Management System
Edit Note
Title:
Content:
class NeuralNetwork { private $layers; // Array defining the number of neurons in each layer Example in a Real-World Scenario: Imagine you're creating a neural network to predict whether someone will buy a product based on 3 factors: Age Salary Years of Experience In this case, the input layer will have 3 neurons (one for each factor), and you will input data such as: Age = 25 Salary = 50,000 Years of Experience = 5 OR Predicting House Price Predicting Student Graduation Email Spam Classifier Email Spam Classifier Predicting Customer Churn (Telecom) Predicting Health Risk (Diabetes Prediction) ///////////////////////////////////////////////////1 example//////////////////////////////////////////// <?php class SimpleNeuralNetwork { private $layers; // Array defining the number of neurons in each layer public function __construct($layers) { // Initialize the layers $this->layers = $layers; } public function feedForward($input) { $output = $input; // Simulating feedforward process through layers for ($i = 1; $i < count($this->layers); $i++) { // For simplicity, just passing the input to the next layer // In a real neural network, you'd apply a matrix multiplication with weights and biases here $output = $this->activate($output); // Apply an activation function (e.g., sigmoid) } return $output; } private function activate($x) { // Sigmoid activation function for simplicity // Check if $x is an array and apply sigmoid element-wise if (is_array($x)) { foreach ($x as &$value) { $value = 1 / (1 + exp(-$value)); // Apply sigmoid element-wise } } else { $x = 1 / (1 + exp(-$x)); // Apply sigmoid to scalar } return $x; } } // Example usage: Creating a simple neural network with 3 input neurons and 1 output neuron $nn = new SimpleNeuralNetwork([3, 2, 1]); // 3 inputs, 2 hidden neurons, 1 output if ($_SERVER['REQUEST_METHOD'] === 'POST') { // Gather input data $input = [ floatval($_POST['age']), floatval($_POST['salary']), floatval($_POST['experience']), ]; // Perform the feedforward operation $output = $nn->feedForward($input); // Extract the scalar value from the output (since it's an array with one element) $predictedOutput = is_array($output) ? $output[0] : $output; // Show prediction and probability echo "Prediction: " . ($predictedOutput > 0.5 ? "Will Buy" : "Won't Buy"); echo "<br>Predicted Probability: " . number_format($predictedOutput, 4); } ?> <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Neural Network Prediction</title> </head> <body> <h1>Simple Neural Network Prediction</h1> <form method="POST"> <label for="age">Age:</label> <input type="number" step="any" id="age" name="age" required><br> <label for="salary">Salary:</label> <input type="number" step="any" id="salary" name="salary" required><br> <label for="experience">Years of Experience:</label> <input type="number" step="any" id="experience" name="experience" required><br> <input type="submit" value="Get Prediction"> </form> </body> </html> ////////////////////////////////////////////////////////// <?php class NeuralNetwork { private $layers; // Array defining the number of neurons in each layer private $weights; // Weights for each layer private $biases; // Bias values for each layer public function __construct($layers) { $this->layers = $layers; $this->weights = []; $this->biases = []; // Initialize weights and biases with random values for ($i = 1; $i < count($layers); $i++) { $this->weights[$i] = $this->randomMatrix($layers[$i], $layers[$i-1]); $this->biases[$i] = $this->randomMatrix($layers[$i], 1); } } private function randomMatrix($rows, $cols) { // Generate a matrix with random values between -1 and 1 $matrix = []; for ($i = 0; $i < $rows; $i++) { for ($j = 0; $j < $cols; $j++) { $matrix[$i][$j] = mt_rand(-1000, 1000) / 1000; // Random value between -1 and 1 } } return $matrix; } public function feedForward($input) { $output = $input; // Feed the input through the layers for ($i = 1; $i < count($this->layers); $i++) { // Matrix multiplication of inputs and weights + bias $output = $this->sigmoid($this->matrixAdd($this->matrixMultiply($this->weights[$i], $output), $this->biases[$i])); } return $output; } private function sigmoid($x) { if (is_array($x)) { // Apply sigmoid to each element in the array (element-wise) foreach ($x as &$row) { foreach ($row as &$value) { $value = 1 / (1 + exp(-$value)); } } } else { $x = 1 / (1 + exp(-$x)); } return $x; } private function matrixMultiply($a, $b) { $rowsA = count($a); $colsA = count($a[0]); $colsB = count($b[0]); $result = []; for ($i = 0; $i < $rowsA; $i++) { for ($j = 0; $j < $colsB; $j++) { $sum = 0; for ($k = 0; $k < $colsA; $k++) { $sum += $a[$i][$k] * $b[$k][$j]; } $result[$i][$j] = $sum; } } return $result; } private function matrixAdd($a, $b) { $rows = count($a); $cols = count($a[0]); $result = []; for ($i = 0; $i < $rows; $i++) { for ($j = 0; $j < $cols; $j++) { $result[$i][$j] = $a[$i][$j] + $b[$i][$j]; } } return $result; } } // Initialize neural network with 5 input features, 4 hidden neurons, and 1 output $nn = new NeuralNetwork([5, 4, 1]); // Ensure that the form is submitted and the POST data exists if ($_SERVER['REQUEST_METHOD'] === 'POST') { if (isset($_POST['age'], $_POST['salary'], $_POST['experience'], $_POST['education'], $_POST['marital_status'], $_POST['location'])) { // Get input values and convert them to float for processing $input = [ [floatval($_POST['age'])], [floatval($_POST['salary'])], [floatval($_POST['experience'])], [floatval($_POST['education'])], // This is an example; adjust based on your input type [floatval($_POST['marital_status'])], // Likewise, adjust based on your input type [floatval($_POST['location'])] // Adjust based on your input type ]; // Perform the feedforward operation to get the predicted output $output = $nn->feedForward($input); $prediction = $output[0][0] >= 0.5 ? "Will Buy" : "Won't Buy"; // Display the result echo "Prediction: $prediction<br>"; echo "Predicted Probability: " . number_format($output[0][0], 4); } else { echo "Please fill in all the fields."; } } else { // Show initial form if the page is accessed without submission echo "Please submit the form to get a prediction."; } ?> <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Predict Product Purchase</title> </head> <body> <h1>Predict if someone will buy a product</h1> <form method="POST"> <label for="age">Age:</label> <input type="number" step="any" id="age" name="age" required><br> <label for="salary">Salary:</label> <input type="number" step="any" id="salary" name="salary" required><br> <label for="experience">Years of Experience:</label> <input type="number" step="any" id="experience" name="experience" required><br> <label for="education">Education Level:</label> <select id="education" name="education" required> <option value="1">High School</option> <option value="2">Bachelor's</option> <option value="3">Master's</option> <option value="4">PhD</option> </select><br> <label for="marital_status">Marital Status:</label> <select id="marital_status" name="marital_status" required> <option value="0">Single</option> <option value="1">Married</option> </select><br> <label for="location">Location:</label> <input type="text" id="location" name="location" required><br> <input type="submit" value="Get Prediction"> </form> </body> </html>
Update Note