Note Management System
Edit Note
Title:
Content:
private $weights = [ [w1, w2], // Weights for the first input neuron to the hidden neurons [w3, w4], // Weights for the second input neuron to the hidden neurons [w5, w6] // Weights for the hidden neurons to the output neuron ]; private $weights = [ [w1, w2, w3, w4], // Weights for the first input neuron to the hidden neurons [w5, w6, w7, w8], // Weights for the second input neuron to the hidden neurons [w9, w10, w11, w12], // Weights for the third input neuron to the hidden neurons [w13, w14] // Weights for the hidden neurons to the output neurons ]; private $weights = [ [w1, w2, w3, w4], // Weights for the first input neuron to the first hidden layer [w5, w6, w7, w8], // Weights for the second input neuron to the first hidden layer [w9, w10, w11, w12], // Weights for the third input neuron to the first hidden layer [w13, w14, w15, w16], // Weights for the first hidden layer to the second hidden layer [w17, w18, w19, w20], // Weights for the second hidden layer to the output neurons [w21, w22, w23, w24], // Weights for the second hidden layer to the output neurons [w25, w26, w27, w28] // Weights for the second hidden layer to the output neurons ]; w1, w2, w3, w4 are the weights connecting the first input neuron to the 4 hidden neurons. w5, w6, w7, w8 are the weights connecting the second input neuron to the 4 hidden neurons. w9, w10, w11, w12 are the weights connecting the third input neuron to the 4 hidden neurons. w13, w14 are the weights connecting the 4 hidden neurons to the 2 output neurons. The $weights array in these examples helps define the connections between neurons in different layers. Each connection has a corresponding weight that will be adjusted during the training process. These weights are critical for the network's ability to learn from input data and make accurate predictions. A = [1, 0, 0, 0, 0] B = [0, 1, 0, 0, 0] C = [0, 0, 1, 0, 0] D = [0, 0, 0, 1, 0] E = [0, 0, 0, 0, 1] <?php class NeuralNetwork { private $weights; // Weights for each layer public function __construct($layers) { // Initialize the weights array $this->weights = []; // Initialize weights with random values for ($i = 1; $i < count($layers); $i++) { $this->weights[$i] = $this->randomMatrix($layers[$i], $layers[$i-1]); } } private function randomMatrix($rows, $cols) { // Generate a matrix with random values between -1 and 1 $matrix = []; for ($i = 0; $i < $rows; $i++) { for ($j = 0; $j < $cols; $j++) { $matrix[$i][$j] = mt_rand(-1000, 1000) / 1000; // Random value between -1 and 1 } } return $matrix; } } // Initialize neural network $nn = new NeuralNetwork([3, 2, 1]); // Example usage: Display weights for each layer if ($_SERVER['REQUEST_METHOD'] === 'POST') { // Example to display the current weights on form submission echo "<pre>"; print_r($nn); echo "</pre>"; } ?> <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Neural Network - Weights Display</title> </head> <body> <h1>Display Neural Network Weights</h1> <form method="POST"> <label for="input1">Input 1:</label> <input type="number" step="any" id="input1" name="input1" required><br> <label for="input2">Input 2:</label> <input type="number" step="any" id="input2" name="input2" required><br> <label for="input3">Input 3:</label> <input type="number" step="any" id="input3" name="input3" required><br> <input type="submit" value="Get Weights"> </form> </body> </html>
Update Note